第2章 k-近邻算法

k-近邻算法_首页

KNN 概述

k-近邻(kNN, k-NearestNeighbor)算法是一种基本分类与回归方法,我们这里只讨论分类问题中的 k-近邻算法。

一句话总结:近朱者赤近墨者黑!

k 近邻算法的输入为实例的特征向量,对应于特征空间的点;输出为实例的类别,可以取多类。k 近邻算法假设给定一个训练数据集,其中的实例类别已定。分类时,对新的实例,根据其 k 个最近邻的训练实例的类别,通过多数表决等方式进行预测。因此,k近邻算法不具有显式的学习过程。

k 近邻算法实际上利用训练数据集对特征向量空间进行划分,并作为其分类的“模型”。 k值的选择、距离度量以及分类决策规则是k近邻算法的三个基本要素。

KNN 场景

电影可以按照题材分类,那么如何区分 动作片爱情片 呢?

  1. 动作片:打斗次数更多
  2. 爱情片:亲吻次数更多

基于电影中的亲吻、打斗出现的次数,使用 k-近邻算法构造程序,就可以自动划分电影的题材类型。

电影视频案例

  1. 现在根据上面我们得到的样本集中所有电影与未知电影的距离,按照距离递增排序,可以找到 k 个距离最近的电影。
  2. 假定 k=3,则三个最靠近的电影依次是, He's Not Really into Dudes 、 Beautiful Woman 和 California Man。
  3. knn 算法按照距离最近的三部电影的类型,决定未知电影的类型,而这三部电影全是爱情片,因此我们判定未知电影是爱情片。

KNN 原理

KNN 工作原理

  1. 假设有一个带有标签的样本数据集(训练样本集),其中包含每条数据与所属分类的对应关系。
  2. 输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较。
    1. 计算新数据与样本数据集中每条数据的距离。
    2. 对求得的所有距离进行排序(从小到大,越小表示越相似)。
    3. 取前 k (k 一般小于等于 20 )个样本数据对应的分类标签。
  3. 求 k 个数据中出现次数最多的分类标签作为新数据的分类。

KNN 通俗理解

给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的 k 个实例,这 k 个实例的多数属于某个类,就把该输入实例分为这个类。

KNN 开发流程

  1. 收集数据:任何方法
  2. 准备数据:距离计算所需要的数值,最好是结构化的数据格式
  3. 分析数据:任何方法
  4. 训练算法:此步骤不适用于 k-近邻算法
  5. 测试算法:计算错误率
  6. 使用算法:输入样本数据和结构化的输出结果,然后运行 k-近邻算法判断输入数据分类属于哪个分类,最后对计算出的分类执行后续处理

KNN 算法特点

  1. 优点:精度高、对异常值不敏感、无数据输入假定
  2. 缺点:计算复杂度高、空间复杂度高
  3. 适用数据范围:数值型和标称型

KNN 项目案例

项目案例1: 优化约会网站的配对效果

完整代码地址: https://github.com/apachecn/MachineLearning/blob/master/src/python/2.KNN/kNN.py

项目概述

海伦使用约会网站寻找约会对象。经过一段时间之后,她发现曾交往过三种类型的人:

  • 不喜欢的人
  • 魅力一般的人
  • 极具魅力的人

她希望:

  1. 工作日与魅力一般的人约会
  2. 周末与极具魅力的人约会
  3. 不喜欢的人则直接排除掉

现在她收集到了一些约会网站未曾记录的数据信息,这更有助于匹配对象的归类。

开发流程

  1. 收集数据:提供文本文件
  2. 准备数据:使用 Python 解析文本文件
  3. 分析数据:使用 Matplotlib 画二维散点图
  4. 训练算法:此步骤不适用于 k-近邻算法
  5. 测试算法:使用海伦提供的部分数据作为测试样本。
  6. 测试样本和非测试样本的区别在于:
  7. 测试样本是已经完成分类的数据,如果预测分类与实际类别不同,则标记为一个错误。
  8. 使用算法:产生简单的命令行程序,然后海伦可以输入一些特征数据以判断对方是否为自己喜欢的类型。

收集数据:提供文本文件

海伦把这些约会对象的数据存放在文本文件 datingTestSet2.txt 中,总共有 1000 行。海伦约会的对象主要包含以下 3 种特征:

  • 每年获得的飞行常客里程数
  • 玩视频游戏所耗时间百分比
  • 每周消费的冰淇淋公升数

文本文件数据格式如下:

  1. 40920 8.326976 0.953952 3
  2. 14488 7.153469 1.673904 2
  3. 26052 1.441871 0.805124 1
  4. 75136 13.147394 0.428964 1
  5. 38344 1.669788 0.134296 1

准备数据:使用 Python 解析文本文件

将文本记录转换为 NumPy 的解析程序

  1. def file2matrix(filename):
  2. """
  3. Desc:
  4. 导入训练数据
  5. parameters:
  6. filename: 数据文件路径
  7. return:
  8. 数据矩阵 returnMat 和对应的类别 classLabelVector
  9. """
  10. fr = open(filename)
  11. # 获得文件中的数据行的行数
  12. numberOfLines = len(fr.readlines())
  13. # 生成对应的空矩阵
  14. # 例如:zeros(2,3)就是生成一个 2*3的矩阵,各个位置上全是 0
  15. returnMat = zeros((numberOfLines, 3)) # prepare matrix to return
  16. classLabelVector = [] # prepare labels return
  17. fr = open(filename)
  18. index = 0
  19. for line in fr.readlines():
  20. # str.strip([chars]) --返回移除字符串头尾指定的字符生成的新字符串
  21. line = line.strip()
  22. # 以 '\t' 切割字符串
  23. listFromLine = line.split('\t')
  24. # 每列的属性数据
  25. returnMat[index, :] = listFromLine[0:3]
  26. # 每列的类别数据,就是 label 标签数据
  27. classLabelVector.append(int(listFromLine[-1]))
  28. index += 1
  29. # 返回数据矩阵returnMat和对应的类别classLabelVector
  30. return returnMat, classLabelVector

分析数据:使用 Matplotlib 画二维散点图

  1. import matplotlib
  2. import matplotlib.pyplot as plt
  3. fig = plt.figure()
  4. ax = fig.add_subplot(111)
  5. ax.scatter(datingDataMat[:, 0], datingDataMat[:, 1], 15.0*array(datingLabels), 15.0*array(datingLabels))
  6. plt.show()

下图中采用矩阵的第一和第二列属性得到很好的展示效果,清晰地标识了三个不同的样本分类区域,具有不同爱好的人其类别区域也不同。

Matplotlib 散点图

序号 玩视频游戏所耗时间百分比 每年获得的飞行常客里程数 每周消费的冰淇淋公升数 样本分类
1 0.8 400 0.5 1
2 12 134 000 0.9 3
3 0 20 000 1.1 2
4 67 32 000 0.1 2

样本3和样本4的距离:
\sqrt{(0-67)^2 + (20000-32000)^2 + (1.1-0.1)^2 }

归一化特征值,消除特征之间量级不同导致的影响

归一化定义: 我是这样认为的,归一化就是要把你需要处理的数据经过处理后(通过某种算法)限制在你需要的一定范围内。首先归一化是为了后面数据处理的方便,其次是保正程序运行时收敛加快。 方法有如下:

1) 线性函数转换,表达式如下:  

  1. y=(x-MinValue)/(MaxValue-MinValue)  
  2. 说明:xy分别为转换前、后的值,MaxValueMinValue分别为样本的最大值和最小值。  

2) 对数函数转换,表达式如下:  

  1. y=log10(x)  
  2. 说明:以10为底的对数函数转换。
  3. 如图:
  4. ![对数函数图像](../images/2.KNN/knn_1.png)

3) 反余切函数转换,表达式如下:

  1. y=arctan(x)*2/PI 
  2. 如图:
  3. ![反余切函数图像](../images/2.KNN/arctan_arccot.gif)

4) 式(1)将输入值换算为[-1,1]区间的值,在输出层用式(2)换算回初始值,其中和分别表示训练样本集中负荷的最大值和最小值。 

在统计学中,归一化的具体作用是归纳统一样本的统计分布性。归一化在0-1之间是统计的概率分布,归一化在-1—+1之间是统计的坐标分布。

  1. def autoNorm(dataSet):
  2. """
  3. Desc:
  4. 归一化特征值,消除特征之间量级不同导致的影响
  5. parameter:
  6. dataSet: 数据集
  7. return:
  8. 归一化后的数据集 normDataSet. ranges和minVals即最小值与范围,并没有用到
  9. 归一化公式:
  10. Y = (X-Xmin)/(Xmax-Xmin)
  11. 其中的 min 和 max 分别是数据集中的最小特征值和最大特征值。该函数可以自动将数字特征值转化为0到1的区间。
  12. """
  13. # 计算每种属性的最大值、最小值、范围
  14. minVals = dataSet.min(0)
  15. maxVals = dataSet.max(0)
  16. # 极差
  17. ranges = maxVals - minVals
  18. normDataSet = zeros(shape(dataSet))
  19. m = dataSet.shape[0]
  20. # 生成与最小值之差组成的矩阵
  21. normDataSet = dataSet - tile(minVals, (m, 1))
  22. # 将最小值之差除以范围组成矩阵
  23. normDataSet = normDataSet / tile(ranges, (m, 1)) # element wise divide
  24. return normDataSet, ranges, minVals

训练算法:此步骤不适用于 k-近邻算法

因为测试数据每一次都要与全量的训练数据进行比较,所以这个过程是没有必要的。

kNN 算法伪代码:

  1. 对于每一个在数据集中的数据点:
  2. 计算目标的数据点(需要分类的数据点)与该数据点的距离
  3. 将距离排序:从小到大
  4. 选取前K个最短距离
  5. 选取这K个中最多的分类类别
  6. 返回该类别来作为目标数据点的预测值
  1. def classify0(inX, dataSet, labels, k):
  2. dataSetSize = dataSet.shape[0]
  3. #距离度量 度量公式为欧氏距离
  4. diffMat = tile(inX, (dataSetSize,1)) dataSet
  5. sqDiffMat = diffMat**2
  6. sqDistances = sqDiffMat.sum(axis=1)
  7. distances = sqDistances**0.5
  8. #将距离排序:从小到大
  9. sortedDistIndicies = distances.argsort()
  10. #选取前K个最短距离, 选取这K个中最多的分类类别
  11. classCount={}
  12. for i in range(k):
  13. voteIlabel = labels[sortedDistIndicies[i]]
  14. classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
  15. sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
  16. return sortedClassCount[0][0]

测试算法:使用海伦提供的部分数据作为测试样本。如果预测分类与实际类别不同,则标记为一个错误。

kNN 分类器针对约会网站的测试代码

  1. def datingClassTest():
  2. """
  3. Desc:
  4. 对约会网站的测试方法
  5. parameters:
  6. none
  7. return:
  8. 错误数
  9. """
  10. # 设置测试数据的的一个比例(训练数据集比例=1-hoRatio)
  11. hoRatio = 0.1 # 测试范围,一部分测试一部分作为样本
  12. # 从文件中加载数据
  13. datingDataMat, datingLabels = file2matrix('input/2.KNN/datingTestSet2.txt') # load data setfrom file
  14. # 归一化数据
  15. normMat, ranges, minVals = autoNorm(datingDataMat)
  16. # m 表示数据的行数,即矩阵的第一维
  17. m = normMat.shape[0]
  18. # 设置测试的样本数量, numTestVecs:m表示训练样本的数量
  19. numTestVecs = int(m * hoRatio)
  20. print 'numTestVecs=', numTestVecs
  21. errorCount = 0.0
  22. for i in range(numTestVecs):
  23. # 对数据测试
  24. classifierResult = classify0(normMat[i, :], normMat[numTestVecs:m, :], datingLabels[numTestVecs:m], 3)
  25. print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, datingLabels[i])
  26. if (classifierResult != datingLabels[i]): errorCount += 1.0
  27. print "the total error rate is: %f" % (errorCount / float(numTestVecs))
  28. print errorCount

使用算法:产生简单的命令行程序,然后海伦可以输入一些特征数据以判断对方是否为自己喜欢的类型。

约会网站预测函数

  1. def classifyPerson():
  2. resultList = ['not at all', 'in small doses', 'in large doses']
  3. percentTats = float(raw_input("percentage of time spent playing video games ?"))
  4. ffMiles = float(raw_input("frequent filer miles earned per year?"))
  5. iceCream = float(raw_input("liters of ice cream consumed per year?"))
  6. datingDataMat, datingLabels = file2matrix('datingTestSet2.txt')
  7. normMat, ranges, minVals = autoNorm(datingDataMat)
  8. inArr = array([ffMiles, percentTats, iceCream])
  9. classifierResult = classify0((inArr-minVals)/ranges,normMat,datingLabels, 3)
  10. print "You will probably like this person: ", resultList[classifierResult - 1]

实际运行效果如下:

  1. >>> classifyPerson()
  2. percentage of time spent playing video games?10
  3. frequent flier miles earned per year?10000
  4. liters of ice cream consumed per year?0.5
  5. You will probably like this person: in small doses

项目案例2: 手写数字识别系统

完整代码地址: https://github.com/apachecn/MachineLearning/blob/master/src/python/2.KNN/kNN.py

项目概述

构造一个能识别数字 0 到 9 的基于 KNN 分类器的手写数字识别系统。

需要识别的数字是存储在文本文件中的具有相同的色彩和大小:宽高是 32 像素 * 32 像素的黑白图像。

开发流程

  1. 收集数据:提供文本文件。
  2. 准备数据:编写函数 img2vector(), 将图像格式转换为分类器使用的向量格式
  3. 分析数据:在 Python 命令提示符中检查数据,确保它符合要求
  4. 训练算法:此步骤不适用于 KNN
  5. 测试算法:编写函数使用提供的部分数据集作为测试样本,测试样本与非测试样本的
  6. 区别在于测试样本是已经完成分类的数据,如果预测分类与实际类别不同,
  7. 则标记为一个错误
  8. 使用算法:本例没有完成此步骤,若你感兴趣可以构建完整的应用程序,从图像中提取
  9. 数字,并完成数字识别,美国的邮件分拣系统就是一个实际运行的类似系统

收集数据: 提供文本文件

目录 trainingDigits 中包含了大约 2000 个例子,每个例子内容如下图所示,每个数字大约有 200 个样本;目录 testDigits 中包含了大约 900 个测试数据。

手写数字数据集的例子

准备数据: 编写函数 img2vector(), 将图像文本数据转换为分类器使用的向量

将图像文本数据转换为向量

  1. def img2vector(filename):
  2. returnVect = zeros((1,1024))
  3. fr = open(filename)
  4. for i in range(32):
  5. lineStr = fr.readline()
  6. for j in range(32):
  7. returnVect[0,32*i+j] = int(lineStr[j])
  8. return returnVect

分析数据:在 Python 命令提示符中检查数据,确保它符合要求

在 Python 命令行中输入下列命令测试 img2vector 函数,然后与文本编辑器打开的文件进行比较:

  1. >>> testVector = kNN.img2vector('testDigits/0_13.txt')
  2. >>> testVector[0,0:32]
  3. array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
  4. >>> testVector[0,32:64]
  5. array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])

训练算法:此步骤不适用于 KNN

因为测试数据每一次都要与全量的训练数据进行比较,所以这个过程是没有必要的。

测试算法:编写函数使用提供的部分数据集作为测试样本,如果预测分类与实际类别不同,则标记为一个错误

  1. def handwritingClassTest():
  2. # 1. 导入训练数据
  3. hwLabels = []
  4. trainingFileList = listdir('input/2.KNN/trainingDigits') # load the training set
  5. m = len(trainingFileList)
  6. trainingMat = zeros((m, 1024))
  7. # hwLabels存储0~9对应的index位置, trainingMat存放的每个位置对应的图片向量
  8. for i in range(m):
  9. fileNameStr = trainingFileList[i]
  10. fileStr = fileNameStr.split('.')[0] # take off .txt
  11. classNumStr = int(fileStr.split('_')[0])
  12. hwLabels.append(classNumStr)
  13. # 将 32*32的矩阵->1*1024的矩阵
  14. trainingMat[i, :] = img2vector('input/2.KNN/trainingDigits/%s' % fileNameStr)
  15. # 2. 导入测试数据
  16. testFileList = listdir('input/2.KNN/testDigits') # iterate through the test set
  17. errorCount = 0.0
  18. mTest = len(testFileList)
  19. for i in range(mTest):
  20. fileNameStr = testFileList[i]
  21. fileStr = fileNameStr.split('.')[0] # take off .txt
  22. classNumStr = int(fileStr.split('_')[0])
  23. vectorUnderTest = img2vector('input/2.KNN/testDigits/%s' % fileNameStr)
  24. classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)
  25. print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, classNumStr)
  26. if (classifierResult != classNumStr): errorCount += 1.0
  27. print "\nthe total number of errors is: %d" % errorCount
  28. print "\nthe total error rate is: %f" % (errorCount / float(mTest))

使用算法:本例没有完成此步骤,若你感兴趣可以构建完整的应用程序,从图像中提取数字,并完成数字识别,美国的邮件分拣系统就是一个实际运行的类似系统

KNN 小结

经过上面的介绍我们可以知道, k 近邻算法有 三个基本的要素:

  • k 值的选择

    • k 值的选择会对 k 近邻算法的结果产生重大的影响。
    • 如果选择较小的 k 值,就相当于用较小的邻域中的训练实例进行预测,“学习”的近似误差(approximation error)会减小,只有与输入实例较近的(相似的)训练实例才会对预测结果起作用。但缺点是“学习”的估计误差(estimation error)会增大,预测结果会对近邻的实例点非常敏感。如果邻近的实例点恰巧是噪声,预测就会出错。换句话说,k 值的减小就意味着整体模型变得复杂,容易发生过拟合。
    • 如果选择较大的 k 值,就相当于用较大的邻域中的训练实例进行预测。其优点是可以减少学习的估计误差。但缺点是学习的近似误差会增大。这时与输入实例较远的(不相似的)训练实例也会对预测起作用,使预测发生错误。 k 值的增大就意味着整体的模型变得简单。
    • 近似误差和估计误差,请看这里:https://www.zhihu.com/question/60793482
  • 距离度量

    • 特征空间中两个实例点的距离是两个实例点相似程度的反映。
    • k 近邻模型的特征空间一般是 n 维实数向量空间 向量空间 。使用的距离是欧氏距离,但也可以是其他距离,如更一般的 Lp距离 距离,或者 Minkowski 距离。
  • 分类决策规则

    • k 近邻算法中的分类决策规则往往是多数表决,即由输入实例的 k 个邻近的训练实例中的多数类决定输入实例的类。