Domain

  1. Stability: 2 - Unstable

Domains provide a way to handle multiple different IO operations as a
single group. If any of the event emitters or callbacks registered to a
domain emit an error event, or throw an error, then the domain object
will be notified, rather than losing the context of the error in the
process.on('uncaughtException') handler, or causing the program to
exit immediately with an error code.

Warning: Don’t Ignore Errors!

Domain error handlers are not a substitute for closing down your
process when an error occurs.

By the very nature of how throw works in JavaScript, there is almost
never any way to safely “pick up where you left off”, without leaking
references, or creating some other sort of undefined brittle state.

The safest way to respond to a thrown error is to shut down the
process. Of course, in a normal web server, you might have many
connections open, and it is not reasonable to abruptly shut those down
because an error was triggered by someone else.

The better approach is send an error response to the request that
triggered the error, while letting the others finish in their normal
time, and stop listening for new requests in that worker.

In this way, domain usage goes hand-in-hand with the cluster module,
since the master process can fork a new worker when a worker
encounters an error. For node programs that scale to multiple
machines, the terminating proxy or service registry can take note of
the failure, and react accordingly.

For example, this is not a good idea:

  1. // XXX WARNING! BAD IDEA!
  2. var d = require('domain').create();
  3. d.on('error', function(er) {
  4. // The error won't crash the process, but what it does is worse!
  5. // Though we've prevented abrupt process restarting, we are leaking
  6. // resources like crazy if this ever happens.
  7. // This is no better than process.on('uncaughtException')!
  8. console.log('error, but oh well', er.message);
  9. });
  10. d.run(function() {
  11. require('http').createServer(function(req, res) {
  12. handleRequest(req, res);
  13. }).listen(PORT);
  14. });

By using the context of a domain, and the resilience of separating our
program into multiple worker processes, we can react more
appropriately, and handle errors with much greater safety.

  1. // Much better!
  2. var cluster = require('cluster');
  3. var PORT = +process.env.PORT || 1337;
  4. if (cluster.isMaster) {
  5. // In real life, you'd probably use more than just 2 workers,
  6. // and perhaps not put the master and worker in the same file.
  7. //
  8. // You can also of course get a bit fancier about logging, and
  9. // implement whatever custom logic you need to prevent DoS
  10. // attacks and other bad behavior.
  11. //
  12. // See the options in the cluster documentation.
  13. //
  14. // The important thing is that the master does very little,
  15. // increasing our resilience to unexpected errors.
  16. cluster.fork();
  17. cluster.fork();
  18. cluster.on('disconnect', function(worker) {
  19. console.error('disconnect!');
  20. cluster.fork();
  21. });
  22. } else {
  23. // the worker
  24. //
  25. // This is where we put our bugs!
  26. var domain = require('domain');
  27. // See the cluster documentation for more details about using
  28. // worker processes to serve requests. How it works, caveats, etc.
  29. var server = require('http').createServer(function(req, res) {
  30. var d = domain.create();
  31. d.on('error', function(er) {
  32. console.error('error', er.stack);
  33. // Note: we're in dangerous territory!
  34. // By definition, something unexpected occurred,
  35. // which we probably didn't want.
  36. // Anything can happen now! Be very careful!
  37. try {
  38. // make sure we close down within 30 seconds
  39. var killtimer = setTimeout(function() {
  40. process.exit(1);
  41. }, 30000);
  42. // But don't keep the process open just for that!
  43. killtimer.unref();
  44. // stop taking new requests.
  45. server.close();
  46. // Let the master know we're dead. This will trigger a
  47. // 'disconnect' in the cluster master, and then it will fork
  48. // a new worker.
  49. cluster.worker.disconnect();
  50. // try to send an error to the request that triggered the problem
  51. res.statusCode = 500;
  52. res.setHeader('content-type', 'text/plain');
  53. res.end('Oops, there was a problem!\n');
  54. } catch (er2) {
  55. // oh well, not much we can do at this point.
  56. console.error('Error sending 500!', er2.stack);
  57. }
  58. });
  59. // Because req and res were created before this domain existed,
  60. // we need to explicitly add them.
  61. // See the explanation of implicit vs explicit binding below.
  62. d.add(req);
  63. d.add(res);
  64. // Now run the handler function in the domain.
  65. d.run(function() {
  66. handleRequest(req, res);
  67. });
  68. });
  69. server.listen(PORT);
  70. }
  71. // This part isn't important. Just an example routing thing.
  72. // You'd put your fancy application logic here.
  73. function handleRequest(req, res) {
  74. switch(req.url) {
  75. case '/error':
  76. // We do some async stuff, and then...
  77. setTimeout(function() {
  78. // Whoops!
  79. flerb.bark();
  80. });
  81. break;
  82. default:
  83. res.end('ok');
  84. }
  85. }

Additions to Error objects

Any time an Error object is routed through a domain, a few extra fields
are added to it.

  • error.domain The domain that first handled the error.
  • error.domainEmitter The event emitter that emitted an ‘error’ event
    with the error object.
  • error.domainBound The callback function which was bound to the
    domain, and passed an error as its first argument.
  • error.domainThrown A boolean indicating whether the error was
    thrown, emitted, or passed to a bound callback function.

Implicit Binding

If domains are in use, then all new EventEmitter objects (including
Stream objects, requests, responses, etc.) will be implicitly bound to
the active domain at the time of their creation.

Additionally, callbacks passed to lowlevel event loop requests (such as
to fs.open, or other callback-taking methods) will automatically be
bound to the active domain. If they throw, then the domain will catch
the error.

In order to prevent excessive memory usage, Domain objects themselves
are not implicitly added as children of the active domain. If they
were, then it would be too easy to prevent request and response objects
from being properly garbage collected.

If you want to nest Domain objects as children of a parent Domain,
then you must explicitly add them.

Implicit binding routes thrown errors and 'error' events to the
Domain’s error event, but does not register the EventEmitter on the
Domain, so domain.dispose() will not shut down the EventEmitter.
Implicit binding only takes care of thrown errors and 'error' events.

Explicit Binding

Sometimes, the domain in use is not the one that ought to be used for a
specific event emitter. Or, the event emitter could have been created
in the context of one domain, but ought to instead be bound to some
other domain.

For example, there could be one domain in use for an HTTP server, but
perhaps we would like to have a separate domain to use for each request.

That is possible via explicit binding.

For example:

  1. // create a top-level domain for the server
  2. var serverDomain = domain.create();
  3. serverDomain.run(function() {
  4. // server is created in the scope of serverDomain
  5. http.createServer(function(req, res) {
  6. // req and res are also created in the scope of serverDomain
  7. // however, we'd prefer to have a separate domain for each request.
  8. // create it first thing, and add req and res to it.
  9. var reqd = domain.create();
  10. reqd.add(req);
  11. reqd.add(res);
  12. reqd.on('error', function(er) {
  13. console.error('Error', er, req.url);
  14. try {
  15. res.writeHead(500);
  16. res.end('Error occurred, sorry.');
  17. } catch (er) {
  18. console.error('Error sending 500', er, req.url);
  19. }
  20. });
  21. }).listen(1337);
  22. });

domain.create()

  • return: {Domain}

Returns a new Domain object.

Class: Domain

The Domain class encapsulates the functionality of routing errors and
uncaught exceptions to the active Domain object.

Domain is a child class of EventEmitter. To handle the errors that it
catches, listen to its error event.

domain.run(fn)

  • fn {Function}

Run the supplied function in the context of the domain, implicitly
binding all event emitters, timers, and lowlevel requests that are
created in that context.

This is the most basic way to use a domain.

Example:

  1. var d = domain.create();
  2. d.on('error', function(er) {
  3. console.error('Caught error!', er);
  4. });
  5. d.run(function() {
  6. process.nextTick(function() {
  7. setTimeout(function() { // simulating some various async stuff
  8. fs.open('non-existent file', 'r', function(er, fd) {
  9. if (er) throw er;
  10. // proceed...
  11. });
  12. }, 100);
  13. });
  14. });

In this example, the d.on('error') handler will be triggered, rather
than crashing the program.

domain.members

  • {Array}

An array of timers and event emitters that have been explicitly added
to the domain.

domain.add(emitter)

  • emitter {EventEmitter | Timer} emitter or timer to be added to the domain

Explicitly adds an emitter to the domain. If any event handlers called by
the emitter throw an error, or if the emitter emits an error event, it
will be routed to the domain’s error event, just like with implicit
binding.

This also works with timers that are returned from setInterval and
setTimeout. If their callback function throws, it will be caught by
the domain ‘error’ handler.

If the Timer or EventEmitter was already bound to a domain, it is removed
from that one, and bound to this one instead.

domain.remove(emitter)

  • emitter {EventEmitter | Timer} emitter or timer to be removed from the domain

The opposite of domain.add(emitter). Removes domain handling from the
specified emitter.

domain.bind(callback)

  • callback {Function} The callback function
  • return: {Function} The bound function

The returned function will be a wrapper around the supplied callback
function. When the returned function is called, any errors that are
thrown will be routed to the domain’s error event.

Example

  1. var d = domain.create();
  2. function readSomeFile(filename, cb) {
  3. fs.readFile(filename, 'utf8', d.bind(function(er, data) {
  4. // if this throws, it will also be passed to the domain
  5. return cb(er, data ? JSON.parse(data) : null);
  6. }));
  7. }
  8. d.on('error', function(er) {
  9. // an error occurred somewhere.
  10. // if we throw it now, it will crash the program
  11. // with the normal line number and stack message.
  12. });

domain.intercept(callback)

  • callback {Function} The callback function
  • return: {Function} The intercepted function

This method is almost identical to domain.bind(callback). However, in
addition to catching thrown errors, it will also intercept Error
objects sent as the first argument to the function.

In this way, the common if (er) return callback(er); pattern can be replaced
with a single error handler in a single place.

Example

  1. var d = domain.create();
  2. function readSomeFile(filename, cb) {
  3. fs.readFile(filename, 'utf8', d.intercept(function(data) {
  4. // note, the first argument is never passed to the
  5. // callback since it is assumed to be the 'Error' argument
  6. // and thus intercepted by the domain.
  7. // if this throws, it will also be passed to the domain
  8. // so the error-handling logic can be moved to the 'error'
  9. // event on the domain instead of being repeated throughout
  10. // the program.
  11. return cb(null, JSON.parse(data));
  12. }));
  13. }
  14. d.on('error', function(er) {
  15. // an error occurred somewhere.
  16. // if we throw it now, it will crash the program
  17. // with the normal line number and stack message.
  18. });

domain.enter()

The enter method is plumbing used by the run, bind, and intercept
methods to set the active domain. It sets domain.active and process.domain
to the domain, and implicitly pushes the domain onto the domain stack managed
by the domain module (see domain.exit() for details on the domain stack). The
call to enter delimits the beginning of a chain of asynchronous calls and I/O
operations bound to a domain.

Calling enter changes only the active domain, and does not alter the domain
itself. Enter and exit can be called an arbitrary number of times on a
single domain.

If the domain on which enter is called has been disposed, enter will return
without setting the domain.

domain.exit()

The exit method exits the current domain, popping it off the domain stack.
Any time execution is going to switch to the context of a different chain of
asynchronous calls, it’s important to ensure that the current domain is exited.
The call to exit delimits either the end of or an interruption to the chain
of asynchronous calls and I/O operations bound to a domain.

If there are multiple, nested domains bound to the current execution context,
exit will exit any domains nested within this domain.

Calling exit changes only the active domain, and does not alter the domain
itself. Enter and exit can be called an arbitrary number of times on a
single domain.

If the domain on which exit is called has been disposed, exit will return
without exiting the domain.

domain.dispose()

  1. Stability: 0 - Deprecated. Please recover from failed IO actions
  2. explicitly via error event handlers set on the domain.

Once dispose has been called, the domain will no longer be used by callbacks
bound into the domain via run, bind, or intercept, and a dispose event
is emitted.