Source examples/offline_inference/neuron.py.
Neuron
from vllm import LLM, SamplingParams# Sample prompts.prompts = ["Hello, my name is","The president of the United States is","The capital of France is","The future of AI is",]# Create a sampling params object.sampling_params = SamplingParams(temperature=0.8, top_p=0.95)# Create an LLM.llm = LLM(model="TinyLlama/TinyLlama-1.1B-Chat-v1.0",max_num_seqs=8,# The max_model_len and block_size arguments are required to be same as# max sequence length when targeting neuron device.# Currently, this is a known limitation in continuous batching support# in transformers-neuronx.# TODO(liangfu): Support paged-attention in transformers-neuronx.max_model_len=1024,block_size=1024,# The device can be automatically detected when AWS Neuron SDK is installed.# The device argument can be either unspecified for automated detection,# or explicitly assigned.device="neuron",tensor_parallel_size=2)# Generate texts from the prompts. The output is a list of RequestOutput objects# that contain the prompt, generated text, and other information.outputs = llm.generate(prompts, sampling_params)# Print the outputs.for output in outputs:prompt = output.promptgenerated_text = output.outputs[0].textprint(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
