3-1,低阶API示范

下面的范例使用TensorFlow的低阶API实现线性回归模型和DNN二分类模型。

低阶API主要包括张量操作,计算图和自动微分。

  1. import tensorflow as tf
  2. #打印时间分割线
  3. @tf.function
  4. def printbar():
  5. today_ts = tf.timestamp()%(24*60*60)
  6. hour = tf.cast(today_ts//3600+8,tf.int32)%tf.constant(24)
  7. minite = tf.cast((today_ts%3600)//60,tf.int32)
  8. second = tf.cast(tf.floor(today_ts%60),tf.int32)
  9. def timeformat(m):
  10. if tf.strings.length(tf.strings.format("{}",m))==1:
  11. return(tf.strings.format("0{}",m))
  12. else:
  13. return(tf.strings.format("{}",m))
  14. timestring = tf.strings.join([timeformat(hour),timeformat(minite),
  15. timeformat(second)],separator = ":")
  16. tf.print("=========="*8+timestring)

一,线性回归模型

1,准备数据

  1. import numpy as np
  2. import pandas as pd
  3. from matplotlib import pyplot as plt
  4. import tensorflow as tf
  5. #样本数量
  6. n = 400
  7. # 生成测试用数据集
  8. X = tf.random.uniform([n,2],minval=-10,maxval=10)
  9. w0 = tf.constant([[2.0],[-3.0]])
  10. b0 = tf.constant([[3.0]])
  11. Y = X@w0 + b0 + tf.random.normal([n,1],mean = 0.0,stddev= 2.0) # @表示矩阵乘法,增加正态扰动
  1. # 数据可视化
  2. %matplotlib inline
  3. %config InlineBackend.figure_format = 'svg'
  4. plt.figure(figsize = (12,5))
  5. ax1 = plt.subplot(121)
  6. ax1.scatter(X[:,0],Y[:,0], c = "b")
  7. plt.xlabel("x1")
  8. plt.ylabel("y",rotation = 0)
  9. ax2 = plt.subplot(122)
  10. ax2.scatter(X[:,1],Y[:,0], c = "g")
  11. plt.xlabel("x2")
  12. plt.ylabel("y",rotation = 0)
  13. plt.show()

3-1,低阶API示范 - 图1

  1. # 构建数据管道迭代器
  2. def data_iter(features, labels, batch_size=8):
  3. num_examples = len(features)
  4. indices = list(range(num_examples))
  5. np.random.shuffle(indices) #样本的读取顺序是随机的
  6. for i in range(0, num_examples, batch_size):
  7. indexs = indices[i: min(i + batch_size, num_examples)]
  8. yield tf.gather(X,indexs), tf.gather(Y,indexs)
  9. # 测试数据管道效果
  10. batch_size = 8
  11. (features,labels) = next(data_iter(X,Y,batch_size))
  12. print(features)
  13. print(labels)
  1. tf.Tensor(
  2. [[ 2.6161194 0.11071014]
  3. [ 9.79207 -0.70180416]
  4. [ 9.792343 6.9149055 ]
  5. [-2.4186516 -9.375019 ]
  6. [ 9.83749 -3.4637213 ]
  7. [ 7.3953056 4.374569 ]
  8. [-0.14686584 -0.28063297]
  9. [ 0.49001217 -9.739792 ]], shape=(8, 2), dtype=float32)
  10. tf.Tensor(
  11. [[ 9.334667 ]
  12. [22.058844 ]
  13. [ 3.0695205]
  14. [26.736238 ]
  15. [35.292133 ]
  16. [ 4.2943544]
  17. [ 1.6713585]
  18. [34.826904 ]], shape=(8, 1), dtype=float32)

2,定义模型

  1. w = tf.Variable(tf.random.normal(w0.shape))
  2. b = tf.Variable(tf.zeros_like(b0,dtype = tf.float32))
  3. # 定义模型
  4. class LinearRegression:
  5. #正向传播
  6. def __call__(self,x):
  7. return x@w + b
  8. # 损失函数
  9. def loss_func(self,y_true,y_pred):
  10. return tf.reduce_mean((y_true - y_pred)**2/2)
  11. model = LinearRegression()

3,训练模型

  1. # 使用动态图调试
  2. def train_step(model, features, labels):
  3. with tf.GradientTape() as tape:
  4. predictions = model(features)
  5. loss = model.loss_func(labels, predictions)
  6. # 反向传播求梯度
  7. dloss_dw,dloss_db = tape.gradient(loss,[w,b])
  8. # 梯度下降法更新参数
  9. w.assign(w - 0.001*dloss_dw)
  10. b.assign(b - 0.001*dloss_db)
  11. return loss
  1. # 测试train_step效果
  2. batch_size = 10
  3. (features,labels) = next(data_iter(X,Y,batch_size))
  4. train_step(model,features,labels)
  1. <tf.Tensor: shape=(), dtype=float32, numpy=211.09982>
  1. def train_model(model,epochs):
  2. for epoch in tf.range(1,epochs+1):
  3. for features, labels in data_iter(X,Y,10):
  4. loss = train_step(model,features,labels)
  5. if epoch%50==0:
  6. printbar()
  7. tf.print("epoch =",epoch,"loss = ",loss)
  8. tf.print("w =",w)
  9. tf.print("b =",b)
  10. train_model(model,epochs = 200)
  1. ================================================================================16:35:56
  2. epoch = 50 loss = 1.78806472
  3. w = [[1.97554708]
  4. [-2.97719598]]
  5. b = [[2.60692883]]
  6. ================================================================================16:36:00
  7. epoch = 100 loss = 2.64588404
  8. w = [[1.97319281]
  9. [-2.97810626]]
  10. b = [[2.95525956]]
  11. ================================================================================16:36:04
  12. epoch = 150 loss = 1.42576694
  13. w = [[1.96466208]
  14. [-2.98337793]]
  15. b = [[3.00264144]]
  16. ================================================================================16:36:08
  17. epoch = 200 loss = 1.68992615
  18. w = [[1.97718477]
  19. [-2.983814]]
  20. b = [[3.01013041]]
  1. ##使用autograph机制转换成静态图加速
  2. @tf.function
  3. def train_step(model, features, labels):
  4. with tf.GradientTape() as tape:
  5. predictions = model(features)
  6. loss = model.loss_func(labels, predictions)
  7. # 反向传播求梯度
  8. dloss_dw,dloss_db = tape.gradient(loss,[w,b])
  9. # 梯度下降法更新参数
  10. w.assign(w - 0.001*dloss_dw)
  11. b.assign(b - 0.001*dloss_db)
  12. return loss
  13. def train_model(model,epochs):
  14. for epoch in tf.range(1,epochs+1):
  15. for features, labels in data_iter(X,Y,10):
  16. loss = train_step(model,features,labels)
  17. if epoch%50==0:
  18. printbar()
  19. tf.print("epoch =",epoch,"loss = ",loss)
  20. tf.print("w =",w)
  21. tf.print("b =",b)
  22. train_model(model,epochs = 200)
  1. ================================================================================16:36:35
  2. epoch = 50 loss = 0.894210339
  3. w = [[1.96927285]
  4. [-2.98914337]]
  5. b = [[3.00987792]]
  6. ================================================================================16:36:36
  7. epoch = 100 loss = 1.58621466
  8. w = [[1.97566223]
  9. [-2.98550248]]
  10. b = [[3.00998402]]
  11. ================================================================================16:36:37
  12. epoch = 150 loss = 2.2695992
  13. w = [[1.96664226]
  14. [-2.99248481]]
  15. b = [[3.01028705]]
  16. ================================================================================16:36:38
  17. epoch = 200 loss = 1.90848124
  18. w = [[1.98000824]
  19. [-2.98888135]]
  20. b = [[3.01085401]]
  1. # 结果可视化
  2. %matplotlib inline
  3. %config InlineBackend.figure_format = 'svg'
  4. plt.figure(figsize = (12,5))
  5. ax1 = plt.subplot(121)
  6. ax1.scatter(X[:,0],Y[:,0], c = "b",label = "samples")
  7. ax1.plot(X[:,0],w[0]*X[:,0]+b[0],"-r",linewidth = 5.0,label = "model")
  8. ax1.legend()
  9. plt.xlabel("x1")
  10. plt.ylabel("y",rotation = 0)
  11. ax2 = plt.subplot(122)
  12. ax2.scatter(X[:,1],Y[:,0], c = "g",label = "samples")
  13. ax2.plot(X[:,1],w[1]*X[:,1]+b[0],"-r",linewidth = 5.0,label = "model")
  14. ax2.legend()
  15. plt.xlabel("x2")
  16. plt.ylabel("y",rotation = 0)
  17. plt.show()

3-1,低阶API示范 - 图2

二,DNN二分类模型

1,准备数据

  1. import numpy as np
  2. import pandas as pd
  3. from matplotlib import pyplot as plt
  4. import tensorflow as tf
  5. %matplotlib inline
  6. %config InlineBackend.figure_format = 'svg'
  7. #正负样本数量
  8. n_positive,n_negative = 2000,2000
  9. #生成正样本, 小圆环分布
  10. r_p = 5.0 + tf.random.truncated_normal([n_positive,1],0.0,1.0)
  11. theta_p = tf.random.uniform([n_positive,1],0.0,2*np.pi)
  12. Xp = tf.concat([r_p*tf.cos(theta_p),r_p*tf.sin(theta_p)],axis = 1)
  13. Yp = tf.ones_like(r_p)
  14. #生成负样本, 大圆环分布
  15. r_n = 8.0 + tf.random.truncated_normal([n_negative,1],0.0,1.0)
  16. theta_n = tf.random.uniform([n_negative,1],0.0,2*np.pi)
  17. Xn = tf.concat([r_n*tf.cos(theta_n),r_n*tf.sin(theta_n)],axis = 1)
  18. Yn = tf.zeros_like(r_n)
  19. #汇总样本
  20. X = tf.concat([Xp,Xn],axis = 0)
  21. Y = tf.concat([Yp,Yn],axis = 0)
  22. #可视化
  23. plt.figure(figsize = (6,6))
  24. plt.scatter(Xp[:,0].numpy(),Xp[:,1].numpy(),c = "r")
  25. plt.scatter(Xn[:,0].numpy(),Xn[:,1].numpy(),c = "g")
  26. plt.legend(["positive","negative"]);

3-1,低阶API示范 - 图3

  1. # 构建数据管道迭代器
  2. def data_iter(features, labels, batch_size=8):
  3. num_examples = len(features)
  4. indices = list(range(num_examples))
  5. np.random.shuffle(indices) #样本的读取顺序是随机的
  6. for i in range(0, num_examples, batch_size):
  7. indexs = indices[i: min(i + batch_size, num_examples)]
  8. yield tf.gather(X,indexs), tf.gather(Y,indexs)
  9. # 测试数据管道效果
  10. batch_size = 10
  11. (features,labels) = next(data_iter(X,Y,batch_size))
  12. print(features)
  13. print(labels)
  1. tf.Tensor(
  2. [[ 0.03732629 3.5783494 ]
  3. [ 0.542919 5.035079 ]
  4. [ 5.860281 -2.4476354 ]
  5. [ 0.63657564 3.194231 ]
  6. [-3.5072308 2.5578873 ]
  7. [-2.4109735 -3.6621518 ]
  8. [ 4.0975413 -2.4172943 ]
  9. [ 1.9393908 -6.782317 ]
  10. [-4.7453732 -0.5176727 ]
  11. [-1.4057113 -7.9775257 ]], shape=(10, 2), dtype=float32)
  12. tf.Tensor(
  13. [[1.]
  14. [1.]
  15. [0.]
  16. [1.]
  17. [1.]
  18. [1.]
  19. [1.]
  20. [0.]
  21. [1.]
  22. [0.]], shape=(10, 1), dtype=float32)

2,定义模型

此处范例我们利用tf.Module来组织模型变量,关于tf.Module的较详细介绍参考本书第四章最后一节: Autograph和tf.Module。

  1. class DNNModel(tf.Module):
  2. def __init__(self,name = None):
  3. super(DNNModel, self).__init__(name=name)
  4. self.w1 = tf.Variable(tf.random.truncated_normal([2,4]),dtype = tf.float32)
  5. self.b1 = tf.Variable(tf.zeros([1,4]),dtype = tf.float32)
  6. self.w2 = tf.Variable(tf.random.truncated_normal([4,8]),dtype = tf.float32)
  7. self.b2 = tf.Variable(tf.zeros([1,8]),dtype = tf.float32)
  8. self.w3 = tf.Variable(tf.random.truncated_normal([8,1]),dtype = tf.float32)
  9. self.b3 = tf.Variable(tf.zeros([1,1]),dtype = tf.float32)
  10. # 正向传播
  11. @tf.function(input_signature=[tf.TensorSpec(shape = [None,2], dtype = tf.float32)])
  12. def __call__(self,x):
  13. x = tf.nn.relu(x@self.w1 + self.b1)
  14. x = tf.nn.relu(x@self.w2 + self.b2)
  15. y = tf.nn.sigmoid(x@self.w3 + self.b3)
  16. return y
  17. # 损失函数(二元交叉熵)
  18. @tf.function(input_signature=[tf.TensorSpec(shape = [None,1], dtype = tf.float32),
  19. tf.TensorSpec(shape = [None,1], dtype = tf.float32)])
  20. def loss_func(self,y_true,y_pred):
  21. #将预测值限制在 1e-7 以上, 1 - 1e-7 以下,避免log(0)错误
  22. eps = 1e-7
  23. y_pred = tf.clip_by_value(y_pred,eps,1.0-eps)
  24. bce = - y_true*tf.math.log(y_pred) - (1-y_true)*tf.math.log(1-y_pred)
  25. return tf.reduce_mean(bce)
  26. # 评估指标(准确率)
  27. @tf.function(input_signature=[tf.TensorSpec(shape = [None,1], dtype = tf.float32),
  28. tf.TensorSpec(shape = [None,1], dtype = tf.float32)])
  29. def metric_func(self,y_true,y_pred):
  30. y_pred = tf.where(y_pred>0.5,tf.ones_like(y_pred,dtype = tf.float32),
  31. tf.zeros_like(y_pred,dtype = tf.float32))
  32. acc = tf.reduce_mean(1-tf.abs(y_true-y_pred))
  33. return acc
  34. model = DNNModel()
  1. # 测试模型结构
  2. batch_size = 10
  3. (features,labels) = next(data_iter(X,Y,batch_size))
  4. predictions = model(features)
  5. loss = model.loss_func(labels,predictions)
  6. metric = model.metric_func(labels,predictions)
  7. tf.print("init loss:",loss)
  8. tf.print("init metric",metric)
  1. init loss: 1.76568353
  2. init metric 0.6
  1. print(len(model.trainable_variables))
  1. 6

3,训练模型

  1. ##使用autograph机制转换成静态图加速
  2. @tf.function
  3. def train_step(model, features, labels):
  4. # 正向传播求损失
  5. with tf.GradientTape() as tape:
  6. predictions = model(features)
  7. loss = model.loss_func(labels, predictions)
  8. # 反向传播求梯度
  9. grads = tape.gradient(loss, model.trainable_variables)
  10. # 执行梯度下降
  11. for p, dloss_dp in zip(model.trainable_variables,grads):
  12. p.assign(p - 0.001*dloss_dp)
  13. # 计算评估指标
  14. metric = model.metric_func(labels,predictions)
  15. return loss, metric
  16. def train_model(model,epochs):
  17. for epoch in tf.range(1,epochs+1):
  18. for features, labels in data_iter(X,Y,100):
  19. loss,metric = train_step(model,features,labels)
  20. if epoch%100==0:
  21. printbar()
  22. tf.print("epoch =",epoch,"loss = ",loss, "accuracy = ", metric)
  23. train_model(model,epochs = 600)
  1. ================================================================================16:47:35
  2. epoch = 100 loss = 0.567795336 accuracy = 0.71
  3. ================================================================================16:47:39
  4. epoch = 200 loss = 0.50955683 accuracy = 0.77
  5. ================================================================================16:47:43
  6. epoch = 300 loss = 0.421476126 accuracy = 0.84
  7. ================================================================================16:47:47
  8. epoch = 400 loss = 0.330618203 accuracy = 0.9
  9. ================================================================================16:47:51
  10. epoch = 500 loss = 0.308296859 accuracy = 0.89
  11. ================================================================================16:47:55
  12. epoch = 600 loss = 0.279367268 accuracy = 0.96
  1. # 结果可视化
  2. fig, (ax1,ax2) = plt.subplots(nrows=1,ncols=2,figsize = (12,5))
  3. ax1.scatter(Xp[:,0],Xp[:,1],c = "r")
  4. ax1.scatter(Xn[:,0],Xn[:,1],c = "g")
  5. ax1.legend(["positive","negative"]);
  6. ax1.set_title("y_true");
  7. Xp_pred = tf.boolean_mask(X,tf.squeeze(model(X)>=0.5),axis = 0)
  8. Xn_pred = tf.boolean_mask(X,tf.squeeze(model(X)<0.5),axis = 0)
  9. ax2.scatter(Xp_pred[:,0],Xp_pred[:,1],c = "r")
  10. ax2.scatter(Xn_pred[:,0],Xn_pred[:,1],c = "g")
  11. ax2.legend(["positive","negative"]);
  12. ax2.set_title("y_pred");

3-1,低阶API示范 - 图4

如果对本书内容理解上有需要进一步和作者交流的地方,欢迎在公众号”Python与算法之美”下留言。作者时间和精力有限,会酌情予以回复。

也可以在公众号后台回复关键字:加群,加入读者交流群和大家讨论。

image.png