3. RBFT常规流程

RBFT的常规流程保证了区块链各共识节点以相同的顺序处理来自客户端的交易。RBFT同PBFT的容错能力相同,需要至少3f+1个节点才能容忍f个拜占庭错误。下图为最少集群节点数下的共识流程,其N=4,f=1。图中的Primary1为共识节点动态选举出来的主节点,负责对客户端发来的交易进行排序打包,Replica2,3,4为从节点。所有节点执行交易的逻辑相同并能够在主节点失效时参与新主节点的选举。

常规流程

RBFT共识保留了PBFT原有的三阶段处理流程(PrePrepare、Prepare、Commit)的同时增加了重要的交易验证(validate)环节,在保证对交易执行顺序达成共识的同时也保证了对区块验证结果的共识。

image1

RBFT常规流程在原生的PBFT算法中穿插了交易验证环节,主节点将交易打包成块后先行验证,并将验证结果包含到PrePrepare消息中进行全网广播,这样PrePrepare消息中既包含了排好序的交易信息也包含了区块验证结果。从节点在收到主节点的PrePrepare消息后先检查消息的合法性,检查通过后广播Prepare消息表明本节点同意主节点的排序结果;在收到(quorum-1)个Prepare消息后从节点才会开始验证区块,并将验证结果与主节点的验证结果进行比对,比对结果一致则广播Commit表明本节点同意主节点的验证结果,否则直接发起ViewChange表明本节点认为主节点有异常行为。RBFT常规流程具体分为如下几个步骤:

  1. 交易转发阶段:客户端将交易发送到区块链中的任意节点(包括共识节点与记账节点),其中记账节点在收到交易后会主动转发给与其相连的共识节点;而共识节点在收到客户端的交易后将其广播给其他共识节点,这样所有共识节点的交易池中都会维护一份完整的交易列表;
  2. PrePrepare阶段:主节点按照如下策略进行打包:用户可以根据需求自定义打包的超时时间(batch timeout)与打包的最大区块大小(batch size),主节点在超时时间内收集到了足够多(超过最大区块大小个数)的交易或者超时时间到达后仍未收集到足够多的交易都会触发主节点的打包事件。主节点将交易按照接收的时间顺序打包成块,并进行验证,计算执行结果,最后将定序好的交易信息连同验证结果等写入PrePrepare消息中广播给所有共识节点,开始三阶段处理流程;
  3. Prepare阶段:从节点在收到主节点的PrePrepare消息后,首先进行消息合法性检查,检查当前的视图与区块号等信息,检查通过后向共识节点广播Prepare消息;
  4. Commit阶段:从节点在收到(quorum-1)个Prepare消息以及相应的PrePrepare消息后进行验证,并将验证结果与主节点写入PrePrepare消息中的验证结果进行比对,比对结果一致则广播Commit表明本节点同意主节点的验证结果,否则直接发起ViewChange表明本节点认为主节点存在异常行为,需要切换主节点;
  5. 写入账本:所有共识节点在收到quorum个Commit消息后将执行结果写入本地账本。

Hyperchain通过在共识模块中加入验证机制,可以保证从节点对主节点的每一次排序打包的结果进行校验,尽早地发现主节点的拜占庭行为,提升了系统的稳定性。

检查点

为了防止运行过程中产生过多的消息缓存,共识节点需要定时清理一些无用的消息缓存。RBFT通过引入PBFT算法中的检查点(checkpoint)机制进行垃圾回收并将检查点的大小K固定设置为10。节点在写入到K的整数倍个区块后达到一个检查点,并广播该检查点的信息,待收集到其他(quorum-1)个共识节点相同的检查信息后就达到了一个稳定检查点(stable checkpoint),随后即可清理该检查点之前的一些消息缓存,保证了运行过程中消息缓存不会无限制地增长。

交易池

交易池是共识节点用于缓存交易的场所,交易池的存在一方面限制了客户端发送交易的频率,另一方面也减少了主节点的带宽压力。首先,通过限制交易池的缓存大小,Hyperchain平台可以在交易池达到限制大小后拒绝接收来自客户端的交易,这样,在合理评估机器性能的情况下,通过合理设置交易缓存大小,可以最大限度地利用机器性能而又不至于出现异常。其次,共识节点在接收到来自客户端的交易后先将其存到自己的交易池中,随后向全网其他共识节点广播该条交易,保证了所有共识节点都维护了一份完整的交易列表;主节点在打包后只需要将交易哈希列表放到PrePrepare消息中进行广播即可,而不用将完整的交易列表打包进行广播,大大减轻了主节点的出口带宽压力。如果从节点在验证之前发现缺少了某些交易,也只需要向主节点索取缺少的那些交易而不用索取整个区块里面所有的交易。