anomaly_detector

The anomaly detector processor takes structured data and runs anomaly detection algorithms on fields that you can configure in that data. The data must be either an integer or a real number for the anomaly detection algorithm to detect anomalies. Deploying the aggregate processor in a pipeline before the anomaly detector processor can help you achieve the best results, as the aggregate processor automatically aggregates events by key and keeps them on the same host. For example, if you are searching for an anomaly in latencies from a specific IP address and if all the events go to the same host, then the host has more data for these events. This additional data results in better training of the machine learning (ML) algorithm, which results in better anomaly detection.

Configuration

You can configure the anomaly detector processor by specifying a key and the options for the selected mode. You can use the following options to configure the anomaly detector processor.

NameRequiredDescription
keysYesA non-ordered List<String> that is used as input to the ML algorithm to detect anomalies in the values of the keys in the list. At least one key is required.
modeYesThe ML algorithm (or model) used to detect anomalies. You must provide a mode. See random_cut_forest mode.

Keys

Keys that are used in the anomaly detector processor are present in the input event. For example, if the input event is {"key1":value1, "key2":value2, "key3":value3}, then any of the keys (such as key1, key2, key3) in that input event can be used as anomaly detector keys as long as their value (such as value1, value2, value3) is an integer or real number.

random_cut_forest mode

The random cut forest (RCF) ML algorithm is an unsupervised algorithm for detecting anomalous data points within a dataset. To detect anomalies, the anomaly detector processor uses the random_cut_forest mode.

NameDescription
random_cut_forestProcesses events using the RCF ML algorithm to detect anomalies.

RCF is an unsupervised ML algorithm for detecting anomalous data points within a dataset. Data Prepper uses RCF to detect anomalies in data by passing the values of the configured key to RCF. For example, when an event with a latency value of 11.5 is sent, the following anomaly event is generated:

  1. { "latency": 11.5, "deviation_from_expected":[10.469302736820003],"grade":1.0}

In this example, deviation_from_expected is a list of deviations for each of the keys from their corresponding expected values, and grade is the anomaly grade that indicates the anomaly severity.

You can configure random_cut_forest mode with the following options.

NameDefault valueRangeDescription
shingle_size41–60The shingle size used in the ML algorithm.
sample_size256100–2500The sample size used in the ML algorithm.
time_decay0.10–1.0The time decay value used in the ML algorithm. Used as the mathematical expression timeDecay divided by SampleSize in the ML algorithm.
typemetricsN/AThe type of data sent to the algorithm.
version1.0N/AThe algorithm version number.

Usage

To get started, create the following pipeline.yaml file. You can use the following pipeline configuration to look for anomalies in the latency field in events that are passed to the processor. Then you can use the following YAML configuration file random_cut_forest mode to detect anomalies:

  1. ad-pipeline:
  2. source:
  3. ...
  4. ....
  5. processor:
  6. - anomaly_detector:
  7. keys: ["latency"]
  8. mode:
  9. random_cut_forest:

When you run the anomaly detector processor, the processor extracts the value for the latency key, and then passes the value through the RCF ML algorithm. You can configure any key that comprises integers or real numbers as values. In the following example, you can configure bytes or latency as the key for an anomaly detector.

{"ip":"1.2.3.4", "bytes":234234, "latency":0.2}

anomaly_detector - 图1