维数灾难

我们已经习惯生活在一个三维的世界里,以至于当我们尝试想象更高维的空间时,我们的直觉不管用了。即使是一个基本的 4D 超正方体也很难在我们的脑中想象出来(见图 8-1),更不用说一个 200 维的椭球弯曲在一个 1000 维的空间里了。

维数灾难 - 图1

图 8-1 点,线,方形,立方体和超正方体(0D 到 4D 超正方体)

这表明很多物体在高维空间表现的十分不同。比如,如果你在一个正方形单元中随机取一个点(一个1×1的正方形),那么随机选的点离所有边界大于 0.001(靠近中间位置)的概率为 0.4%(1 - 0.998^2)(换句话说,一个随机产生的点不大可能严格落在某一个维度上。但是在一个 1,0000 维的单位超正方体(一个1×1×...×1的立方体,有 10,000 个 1),这种可能性超过了 99.999999%。在高维超正方体中,大多数点都分布在边界处。

还有一个更麻烦的区别:如果你在一个平方单位中随机选取两个点,那么这两个点之间的距离平均约为 0.52。如果您在单位 3D 立方体中选取两个随机点,平均距离将大致为 0.66。但是,在一个 1,000,000 维超立方体中随机抽取两点呢?那么,平均距离,信不信由你,大概为 408.25(大致 \sqrt{1,000,000/6})!这非常违反直觉:当它们都位于同一单元超立方体内时,两点是怎么距离这么远的?这一事实意味着高维数据集有很大风险分布的非常稀疏:大多数训练实例可能彼此远离。当然,这也意味着一个新实例可能远离任何训练实例,这使得预测的可靠性远低于我们处理较低维度数据的预测,因为它们将基于更大的推测(extrapolations)。简而言之,训练集的维度越高,过拟合的风险就越大。

理论上来说,维数爆炸的一个解决方案是增加训练集的大小从而达到拥有足够密度的训练集。不幸的是,在实践中,达到给定密度所需的训练实例的数量随着维度的数量呈指数增长。如果只有 100 个特征(比 MNIST 问题要少得多)并且假设它们均匀分布在所有维度上,那么如果想要各个临近的训练实例之间的距离在 0.1 以内,您需要比宇宙中的原子还要多的训练实例。