Raven

本文将介绍如何安装Raven和使用Raven来增强边缘集群中的边-边和边-云网络打通能力。

假设你已经有了一个边缘kubernetes集群,节点分布在不同的物理区域如图所示,并且已经在这个集群中部署了Raven Controller ManagerRaven Agent,如果没有部署可以参照安装教程,有关Raven Controller Manager的详细信息在这里可以找到。 raven_deploy

1. 节点打标区分不同网络域

如下所示,假设你的边缘集群中有五个节点,分布在三个不同的物理(网络)区域,其中节点master节点同样也是云端节点。

  1. $ kubectl get nodes -o wide
  2. NAME STATUS ROLES AGE VERSION INTERNAL-IP EXTERNAL-IP OS-IMAGE KERNEL-VERSION CONTAINER-RUNTIME
  3. izbp15inok0kbfkg3in52rz Ready Edge-HZ-1 27h v1.22.11 172.16.2.103 <none> CentOS Linux 7 (Core) 3.10.0-1160.81.1.el7.x86_64 docker://19.3.15
  4. izbp15inok0kbfkg3in52sz Ready Edge-HZ-2 26h v1.22.11 172.16.2.104 <none> CentOS Linux 7 (Core) 3.10.0-1160.81.1.el7.x86_64 docker://19.3.15
  5. izm5eb24dmjfimuaybpnqzz Ready Edge-QD-1 29h v1.22.11 172.16.1.89 <none> CentOS Linux 7 (Core) 3.10.0-1160.80.1.el7.x86_64 docker://19.3.15
  6. izm5eb24dmjfimuaybpnr0z Ready Edge-QD-2 29h v1.22.11 172.16.1.90 <none> CentOS Linux 7 (Core) 3.10.0-1160.80.1.el7.x86_64 docker://19.3.15
  7. izwz9dohcv74iegqecp4axz Ready control-plane,master 5d21h v1.22.11 192.168.0.195 <none> CentOS Linux 7 (Core) 3.10.0-1160.80.1.el7.x86_64 docker://20.10.2
  8. izwz9ey0js5z7mornclpd6z Ready cloud 3h3m v1.22.11 192.168.0.196 <none> CentOS Linux 7 (Core) 3.10.0-1160.80.1.el7.x86_64 docker://20.10.2

我们对位于不同物理(网络)区域节点,分别使用一个Gateway CR来进行管理。通过给节点打标的方式,来标识节点由哪个Gateway管理。

通过如下命令,我们给位于hangzhou的节点打gw-hangzhou的标签,来表明这些节点是由gw-hangzhou这个Gateway CR来管理的。

  1. $ kubectl label nodes izbp15inok0kbfkg3in52rz izbp15inok0kbfkg3in52sz raven.openyurt.io/gateway=gw-hangzhou
  2. node/izbp15inok0kbfkg3in52rz not labeled
  3. node/izbp15inok0kbfkg3in52sz not labeled

同样地,我们分别为位于云端节点和master节点打上gw-cloud,和给位于qingdao的节点打gw-qingdao的标签。

  1. $ kubectl label nodes izwz9dohcv74iegqecp4axz izwz9ey0js5z7mornclpd6z raven.openyurt.io/gateway=gw-cloud
  2. node/izwz9dohcv74iegqecp4axz labeled
  3. node/izwz9ey0js5z7mornclpd6z labeled
  1. $ kubectl label nodes izm5eb24dmjfimuaybpnqzz izm5eb24dmjfimuaybpnr0z raven.openyurt.io/gateway=gw-qingdao
  2. node/izm5eb24dmjfimuaybpnqzz labeled
  3. node/izm5eb24dmjfimuaybpnr0z labeled

运行如下命令,检查相应的Raven Agent的Pod是否成功运行。

  1. $ kubectl get pod -n kube-system | grep raven-agent-ds
  2. raven-agent-ds-4b587 1/1 Running 0 25h
  3. raven-agent-ds-dmh66 1/1 Running 0 25h
  4. raven-agent-ds-gb5qj 1/1 Running 0 25h
  5. raven-agent-ds-gzpfh 1/1 Running 0 170m
  6. raven-agent-ds-ksxq6 1/1 Running 0 25h
  7. raven-agent-ds-qhjtb 1/1 Running 0 25h

2. 如何使用

2.1 Gateways

  • 创建的Gateway CR
  1. $ cat <<EOF | kubectl apply -f -
  2. apiVersion: raven.openyurt.io/v1alpha1
  3. kind: Gateway
  4. metadata:
  5. name: gw-hangzhou
  6. spec:
  7. endpoints:
  8. - nodeName: izbp15inok0kbfkg3in52rz
  9. underNAT: true
  10. - nodeName: izbp14hrmgyfx2n3xdsl0hz
  11. underNAT: true
  12. ---
  13. apiVersion: raven.openyurt.io/v1alpha1
  14. kind: Gateway
  15. metadata:
  16. name: gw-cloud
  17. spec:
  18. endpoints:
  19. - nodeName: izwz9dohcv74iegqecp4axz
  20. underNAT: false
  21. - nodeName: izwz9ey0js5z7mornclpd6z
  22. underNAT: false
  23. ---
  24. apiVersion: raven.openyurt.io/v1alpha1
  25. kind: Gateway
  26. metadata:
  27. name: gw-qingdao
  28. spec:
  29. endpoints:
  30. - nodeName: izm5eb24dmjfimuaybpnqzz
  31. underNAT: true
  32. - nodeName: izm5eb24dmjfimuaybpnr0z
  33. underNAT: true
  34. EOF
  • 查看各个Gateway CR的状态
  1. $ kubectl get gateways
  2. NAME ACTIVEENDPOINT
  3. gw-cloud izwz9dohcv74iegqecp4axz
  4. gw-hangzhou izbp15inok0kbfkg3in52rz
  5. gw-qingdao izm5eb24dmjfimuaybpnqzz

2.2 测试位于不同网络域的Pod网络联通性

  • 创建测试Pod
  1. $ cat <<EOF | kubectl apply -f -
  2. apiVersion: apps/v1
  3. kind: Deployment
  4. metadata:
  5. name: busy-box
  6. spec:
  7. replicas: 4
  8. selector:
  9. matchLabels:
  10. app: busy-box
  11. template:
  12. metadata:
  13. labels:
  14. app: busy-box
  15. spec:
  16. containers:
  17. - name: busy-box
  18. image: busybox
  19. command:
  20. - /bin/sh
  21. - -c
  22. - sleep 3000
  23. nodeSelector:
  24. openyurt.io/is-edge-worker: "true"
  25. EOF
  • 确定测试Pod正常运行
  1. $ kubectl get pod -o wide
  2. busy-box-6f46f8585b-48zb9 1/1 Running 0 76s 10.244.19.3 izbp15inok0kbfkg3in52sz <none> <none>
  3. busy-box-6f46f8585b-9nm64 1/1 Running 0 76s 10.244.16.161 izm5eb24dmjfimuaybpnqzz <none> <none>
  4. busy-box-6f46f8585b-kv4dw 1/1 Running 0 76s 10.244.17.19 izm5eb24dmjfimuaybpnr0z <none> <none>
  5. busy-box-6f46f8585b-t5v9d 1/1 Running 0 76s 10.244.18.4 izbp15inok0kbfkg3in52rz <none> <none>
  • 测试跨网络域的Pod网络联通
  1. $ kubectl exec -it busy-box-6f46f8585b-48zb9 -- sh
  2. / # ping 10.244.17.19 -c 4
  3. PING 10.244.17.19 (10.244.17.19): 56 data bytes
  4. 64 bytes from 10.244.17.19: seq=0 ttl=59 time=78.048 ms
  5. 64 bytes from 10.244.17.19: seq=1 ttl=59 time=77.424 ms
  6. 64 bytes from 10.244.17.19: seq=2 ttl=59 time=77.490 ms
  7. 64 bytes from 10.244.17.19: seq=3 ttl=59 time=77.472 ms
  8. --- 10.244.17.19 ping statistics ---
  9. 4 packets transmitted, 4 packets received, 0% packet loss
  10. round-trip min/avg/max = 77.424/77.608/78.048 ms
  • 测试跨网络域的节点网络联通: 登陆到非Gateway节点Edge-HZ-2 ping 非Gateway节点Edge-QD-2
  1. # 节点Edge-HZ-2(非Gateway节点):
  2. ping 172.16.1.90 -c 4
  3. PING 172.16.1.90 (172.16.1.90) 56(84) bytes of data.
  4. 64 bytes from 172.16.1.90: icmp_seq=1 ttl=61 time=77.5 ms
  5. 64 bytes from 172.16.1.90: icmp_seq=2 ttl=61 time=77.3 ms
  6. 64 bytes from 172.16.1.90: icmp_seq=3 ttl=61 time=78.5 ms
  7. 64 bytes from 172.16.1.90: icmp_seq=4 ttl=61 time=77.3 ms
  8. --- 172.16.1.90 ping statistics ---
  9. 4 packets transmitted, 4 received, 0% packet loss, time 3003ms
  10. rtt min/avg/max/mdev = 77.314/77.682/78.531/0.533 ms
  1. # 抓包
  2. # 节点Edge-HZ-1(Gateway节点):
  3. tcpdump -i raven0
  4. tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
  5. listening on raven0, link-type EN10MB (Ethernet), capture size 262144 bytes
  6. 16:13:12.132496 IP 172.16.2.104 > 172.16.1.90: ICMP echo request, id 2, seq 1, length 64
  7. 16:13:13.133606 IP 172.16.2.104 > 172.16.1.90: ICMP echo request, id 2, seq 2, length 64
  8. 16:13:14.134172 IP 172.16.2.104 > 172.16.1.90: ICMP echo request, id 2, seq 3, length 64
  9. 16:13:15.135570 IP 172.16.2.104 > 172.16.1.90: ICMP echo request, id 2, seq 4, length 64
  1. # 抓包
  2. # 节点Edge-QD-1(Gateway节点):
  3. tcpdump -i raven0
  4. tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
  5. listening on raven0, link-type EN10MB (Ethernet), capture size 262144 bytes
  6. 16:13:12.174023 IP 172.16.1.90 > 172.16.2.104: ICMP echo reply, id 2, seq 1, length 64
  7. 16:13:13.175096 IP 172.16.1.90 > 172.16.2.104: ICMP echo reply, id 2, seq 2, length 64
  8. 16:13:14.176813 IP 172.16.1.90 > 172.16.2.104: ICMP echo reply, id 2, seq 3, length 64
  9. 16:13:15.177024 IP 172.16.1.90 > 172.16.2.104: ICMP echo reply, id 2, seq 4, length 64
  1. # 抓包
  2. # 节点Edge-QD-2(非Gateway节点):
  3. tcpdump -i raven0
  4. tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
  5. listening on raven0, link-type EN10MB (Ethernet), capture size 262144 bytes
  6. 16:13:12.173087 IP iZm5eb24dmjfimuaybpnr0Z > 172.16.2.104: ICMP echo reply, id 2, seq 1, length 64
  7. 16:13:13.174148 IP iZm5eb24dmjfimuaybpnr0Z > 172.16.2.104: ICMP echo reply, id 2, seq 2, length 64
  8. 16:13:14.175884 IP iZm5eb24dmjfimuaybpnr0Z > 172.16.2.104: ICMP echo reply, id 2, seq 3, length 64
  9. 16:13:15.176090 IP iZm5eb24dmjfimuaybpnr0Z > 172.16.2.104: ICMP echo reply, id 2, seq 4, length 64

其他特性:

默认情况下,raven 使用 IPSec 作为 VPN 后端,我们还提供WireGuard作为替代方案。您可以通过以下步骤切换到 WireGuard 后端:

  • Raven 需要在集群中的网关节点上加载 WireGuard 内核模块。从 Linux 5.6 开始,内核包含 WireGuard in-tree;具有旧内核的 Linux 发行版将需要安装 WireGuard。对于大多数 Linux 发行版,这可以使用系统包管理器来完成。有关详细信息,请参阅安装 WireGuard。
  • 网关节点将需要一个开放的 UDP 端口才能进行通信。默认情况下,WireGuard 使用 UDP 端口 51820。 运行以下命令:

    1. cd raven
    2. git checkout v0.3.0
    3. VPN_DRIVER=wireguard make deploy