JDBC驱动
本文档将介绍 SparkSQL 通过 JDBC 驱动对接 SequoiaDB 巨杉数据库的示例。
SparkSQL连接SequoiaDB
SparkSQL 可以通过 JDBC 驱动连接 SequoiaDB 进行操作。
连接前准备
下载安装 Spark 和 SequoiaDB 数据库,将 Spark-SequoiaDB 连接组件和 SequoiaDB Java 驱动的 jar 包复制到 Spark 安装路径下的
jars目录下新建一个 java 项目,并导入 sparkSQL 的 JDBC 驱动程序依赖包,可使用 maven 下载,参考配置如下:
<dependencies><dependency><groupId>org.apache.hive</groupId><artifactId>hive-jdbc</artifactId><version>$version</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-common</artifactId><version>$version</version></dependency></dependencies>
示例
假设 SequoiaDB 存在集合 test.test,且保存数据如下:
> db.test.test.find(){"_id": {"$oid": "5d5911f41125bc9c9aa2bc0b"},"c1": 0,"c2": "mary","c3": 15}{"_id": {"$oid": "5d5912041125bc9c9aa2bc0c"},"c1": 1,"c2": "lili","c3": 25}
编写并执行示例代码
package com.spark.samples;import java.sql.Connection;import java.sql.DriverManager;import java.sql.ResultSet;import java.sql.SQLException;import java.sql.Statement;public class HiveJdbcClient {public static void main(String[] args) throws ClassNotFoundException {//JDBC Driver程序的类名Class.forName("org.apache.hive.jdbc.HiveDriver");try {//连接SparkSQL,假设spark服务所在主机名为sparkServerConnection connection = DriverManager.getConnection("jdbc:hive2://sparkServer:10000/default", "", "");System.out.println("connection success!");Statement statement = connection.createStatement();// 创建表,该表映射SequoiaDB中表test.testString crtTableName = "test";statement.execute("CREATE TABLE" + crtTableName+ "( c1 int, c2 string, c3 int ) USING com.sequoiadb.spark OPTIONS ( host 'server1:11810,server2:11810', "+ "collectionspace 'test', collection 'test',username '',password '')");// 查询表test数据,返回sequoiaDB中test.test表中的数据信息String sql = "select * from " + crtTableName;System.out.println("Running:" + sql);ResultSet resultSet = statement.executeQuery(sql);while (resultSet.next()) {System.out.println(String.valueOf(resultSet.getString(1)) + "\t" + String.valueOf(resultSet.getString(2)));}statement.close();connection.close();} catch (SQLException e) {e.printStackTrace();}}}
运行结果如下:
connection success!Running:select * from test1 lili 250 mary 15
SparkSQL对接SequoiaSQL
SparkSQL 可以通过 DataFrames 使用 JDBC 对 SequoiaSQL-MySQL 或 SequoiaSQL-PGSQL 进行读写操作。
对接前准备
下载相应的 JDBC 驱动,将其拷贝到 spark 集群
SPARK_HOME/jars目录下在读实例执行创建测试库、测试用户、授权及准备数据,在写实例执行创建测试库、测试用户及授权
-- Create test databasecreate database sparktest;-- Create a user representing your Spark clustercreate user 'sparktest'@'%' identified by 'sparktest';-- Add privileges for the Spark clustergrant create, delete, drop, insert, select, update on sparktest.* to 'sparktest'@'%';flush privileges;-- Create a test table of physical characteristics.use sparktest;create table people (id int(10) not null auto_increment,name char(50) not null,is_male tinyint(1) not null,height_in int(4) not null,weight_lb int(4) not null,primary key (id),key (id));-- Create sample data to load into a DataFrameinsert into people values (null, 'Alice', 0, 60, 125);insert into people values (null, 'Brian', 1, 64, 131);insert into people values (null, 'Charlie', 1, 74, 183);insert into people values (null, 'Doris', 0, 58, 102);insert into people values (null, 'Ellen', 0, 66, 140);insert into people values (null, 'Frank', 1, 66, 151);insert into people values (null, 'Gerard', 1, 68, 190);insert into people values (null, 'Harold', 1, 61, 128);
示例
编写示例代码
package com.sequoiadb.test;import org.apache.spark.sql.Dataset;import org.apache.spark.sql.Row;import org.apache.spark.sql.SparkSession;import java.io.File;import java.io.FileInputStream;import java.util.Properties;public final class JDBCDemo {public static void main(String[] args) throws Exception {String readUrl = "jdbc:mysql://192.168.30.81/sparktest" ;String writeUrl = "jdbc:mysql://192.168.30.82/sparktest" ;SparkSession spark = SparkSession.builder().appName("JDBCDemo").getOrCreate();Properties dbProperties = new Properties();dbProperties.setProperty("user", "sparktest") ;dbProperties.setProperty("password", "sparktest" );System.out.println("A DataFrame loaded from the entire contents of a table over JDBC.");String where = "sparktest.people";Dataset<Row> entireDF = spark.read().jdbc(readUrl, where, dbProperties);entireDF.printSchema();entireDF.show();System.out.println("Filtering the table to just show the males.");entireDF.filter("is_male = 1").show();System.out.println("Alternately, pre-filter the table for males before loading over JDBC.");where = "(select * from sparktest.people where is_male = 1) as subset";Dataset<Row> malesDF = spark.read().jdbc(readUrl, where, dbProperties);malesDF.show();System.out.println("Update weights by 2 pounds (results in a new DataFrame with same column names)");Dataset<Row> heavyDF = entireDF.withColumn("updated_weight_lb", entireDF.col("weight_lb").plus(2));Dataset<Row> updatedDF = heavyDF.select("id", "name", "is_male", "height_in", "updated_weight_lb").withColumnRenamed("updated_weight_lb", "weight_lb");updatedDF.show();System.out.println("Save the updated data to a new table with JDBC");where = "sparktest.updated_people";updatedDF.write().mode("error").jdbc(writeUrl, where, dbProperties);System.out.println("Load the new table into a new DataFrame to confirm that it was saved successfully.");Dataset<Row> retrievedDF = spark.read().jdbc(writeUrl, where, dbProperties);retrievedDF.show();spark.stop();}}
编译并提交任务
mkdir -p target/javajavac src/main/java/com/sequoiadb/test/JDBCDemo.java -classpath "$SPARK_HOME/jars/*" -d target/javacd target/javajar -cf ../JDBCDemo.jar *cd ../..APP_ARGS="--class com.sequoiadb.test.JDBCDemo target/JDBCDemo.jar"#本地提交$SPARK_HOME/bin/spark-submit --driver-class-path lib/mysql-connector-java-5.1.38.jar $APP_ARGS#集群提交$SPARK_HOME/bin/spark-submit --master spark://ip:7077 $APP_ARGS
运行结果如下:
A DataFrame loaded from the entire contents of a table over JDBC.root|-- id: integer (nullable = true)|-- name: string (nullable = true)|-- is_male: boolean (nullable = true)|-- height_in: integer (nullable = true)|-- weight_lb: integer (nullable = true)+---+-------+-------+---------+---------+| id| name|is_male|height_in|weight_lb|+---+-------+-------+---------+---------+| 1| Alice| false| 60| 125|| 2| Brian| true| 64| 131|| 3|Charlie| true| 74| 183|| 4| Doris| false| 58| 102|| 5| Ellen| false| 66| 140|| 6| Frank| true| 66| 151|| 7| Gerard| true| 68| 190|| 8| Harold| true| 61| 128|+---+-------+-------+---------+---------+Filtering the table to just show the males.+---+-------+-------+---------+---------+| id| name|is_male|height_in|weight_lb|+---+-------+-------+---------+---------+| 2| Brian| true| 64| 131|| 3|Charlie| true| 74| 183|| 6| Frank| true| 66| 151|| 7| Gerard| true| 68| 190|| 8| Harold| true| 61| 128|+---+-------+-------+---------+---------+Alternately, pre-filter the table for males before loading over JDBC.+---+-------+-------+---------+---------+| id| name|is_male|height_in|weight_lb|+---+-------+-------+---------+---------+| 2| Brian| true| 64| 131|| 3|Charlie| true| 74| 183|| 6| Frank| true| 66| 151|| 7| Gerard| true| 68| 190|| 8| Harold| true| 61| 128|+---+-------+-------+---------+---------+Update weights by 2 pounds (results in a new DataFrame with same column names)+---+-------+-------+---------+---------+| id| name|is_male|height_in|weight_lb|+---+-------+-------+---------+---------+| 1| Alice| false| 60| 127|| 2| Brian| true| 64| 133|| 3|Charlie| true| 74| 185|| 4| Doris| false| 58| 104|| 5| Ellen| false| 66| 142|| 6| Frank| true| 66| 153|| 7| Gerard| true| 68| 192|| 8| Harold| true| 61| 130|+---+-------+-------+---------+---------+Save the updated data to a new table with JDBCLoad the new table into a new DataFrame to confirm that it was saved successfully.+---+-------+-------+---------+---------+| id| name|is_male|height_in|weight_lb|+---+-------+-------+---------+---------+| 1| Alice| false| 60| 127|| 2| Brian| true| 64| 133|| 3|Charlie| true| 74| 185|| 4| Doris| false| 58| 104|| 5| Ellen| false| 66| 142|| 6| Frank| true| 66| 153|| 7| Gerard| true| 68| 192|| 8| Harold| true| 61| 130|+---+-------+-------+---------+---------+
