参数优化

vnpy提供2种参数优化的解决方案:穷举算法、遗传算法

穷举算法

穷举算法原理:

  • 输入需要优化的参数名、优化区间、优化步进,以及优化目标。
  1. def add_parameter(
  2. self, name: str, start: float, end: float = None, step: float = None
  3. ):
  4. """"""
  5. if not end and not step:
  6. self.params[name] = [start]
  7. return
  8.  
  9. if start >= end:
  10. print("参数优化起始点必须小于终止点")
  11. return
  12.  
  13. if step <= 0:
  14. print("参数优化步进必须大于0")
  15. return
  16.  
  17. value = start
  18. value_list = []
  19.  
  20. while value <= end:
  21. value_list.append(value)
  22. value += step
  23.  
  24. self.params[name] = value_list
  25.  
  26. def set_target(self, target_name: str):
  27. """"""
  28. self.target_name = target_name
  • 形成全局参数组合, 数据结构为[{key: value, key: value}, {key: value, key: value}]。
  1. def generate_setting(self):
  2. """"""
  3. keys = self.params.keys()
  4. values = self.params.values()
  5. products = list(product(*values))
  6.  
  7. settings = []
  8. for p in products:
  9. setting = dict(zip(keys, p))
  10. settings.append(setting)
  11.  
  12. return settings
  • 遍历全局中的每一个参数组合:遍历的过程即运行一次策略回测,并且返回优化目标数值;然后根据目标数值排序,输出优化结果。
  1. def run_optimization(self, optimization_setting: OptimizationSetting, output=True):
  2. """"""
  3. # Get optimization setting and target
  4. settings = optimization_setting.generate_setting()
  5. target_name = optimization_setting.target_name
  6.  
  7. if not settings:
  8. self.output("优化参数组合为空,请检查")
  9. return
  10.  
  11. if not target_name:
  12. self.output("优化目标未设置,请检查")
  13. return
  14.  
  15. # Use multiprocessing pool for running backtesting with different setting
  16. pool = multiprocessing.Pool(multiprocessing.cpu_count())
  17.  
  18. results = []
  19. for setting in settings:
  20. result = (pool.apply_async(optimize, (
  21. target_name,
  22. self.strategy_class,
  23. setting,
  24. self.vt_symbol,
  25. self.interval,
  26. self.start,
  27. self.rate,
  28. self.slippage,
  29. self.size,
  30. self.pricetick,
  31. self.capital,
  32. self.end,
  33. self.mode
  34. )))
  35. results.append(result)
  36.  
  37. pool.close()
  38. pool.join()
  39.  
  40. # Sort results and output
  41. result_values = [result.get() for result in results]
  42. result_values.sort(reverse=True, key=lambda result: result[1])
  43.  
  44. if output:
  45. for value in result_values:
  46. msg = f"参数:{value[0]}, 目标:{value[1]}"
  47. self.output(msg)
  48.  
  49. return result_values

注意:可以使用multiprocessing库来创建多进程实现并行优化。例如:若用户计算机是2核,优化时间为原来1/2;若计算机是10核,优化时间为原来1/10。

穷举算法操作:

  • 点击“参数优化”按钮,会弹出“优化参数配置”窗口,用于设置优化目标(如最大化夏普比率、最大化收益回撤比)和设置需要优化的参数以及优化区间,如图。

https://vnpy-community.oss-cn-shanghai.aliyuncs.com/forum_experience/yazhang/cta_backtester/optimize_setting.png

  • 设置好需要优化的参数后,点击“优化参数配置”窗口下方的“确认”按钮开始进行调用CPU多核进行多进程并行优化,同时日志会输出相关信息。

https://vnpy-community.oss-cn-shanghai.aliyuncs.com/forum_experience/yazhang/cta_backtester/optimize_log.png

  • 点击“优化结果”按钮可以看出优化结果,如图的参数组合是基于目标数值(夏普比率)由高到低的顺序排列的。

https://vnpy-community.oss-cn-shanghai.aliyuncs.com/forum_experience/yazhang/cta_backtester/optimize_result.png

遗传算法

遗传算法原理:

  • 输入需要优化的参数名、优化区间、优化步进,以及优化目标;

  • 形成全局参数组合,该组合的数据结构是列表内镶嵌元组,即[[(key, value), (key, value)] , [(key, value), (key,value)]],与穷举算法的全局参数组合的数据结构不同。这样做的目的是有利于参数间进行交叉互换和变异。

  1. def generate_setting_ga(self):
  2. """"""
  3. settings_ga = []
  4. settings = self.generate_setting()
  5. for d in settings:
  6. param = [tuple(i) for i in d.items()]
  7. settings_ga.append(param)
  8. return settings_ga
  • 形成个体:调用random()函数随机从全局参数组合中获取参数。
  1. def generate_parameter():
  2. """"""
  3. return random.choice(settings)
  • 定义个体变异规则: 即发生变异时,旧的个体完全被新的个体替代。
  1. def mutate_individual(individual, indpb):
  2. """"""
  3. size = len(individual)
  4. paramlist = generate_parameter()
  5. for i in range(size):
  6. if random.random() < indpb:
  7. individual[i] = paramlist[i]
  8. return individual,
  • 定义评估函数:入参的是个体,即[(key, value), (key, value)]形式的参数组合,然后通过dict()转化成setting字典,然后运行回测,输出目标优化数值,如夏普比率、收益回撤比。(注意,修饰器@lru_cache作用是缓存计算结果,避免遇到相同的输入重复计算,大大降低运行遗传算法的时间)
  1. @lru_cache(maxsize=1000000)
  2. def _ga_optimize(parameter_values: tuple):
  3. """"""
  4. setting = dict(parameter_values)
  5.  
  6. result = optimize(
  7. ga_target_name,
  8. ga_strategy_class,
  9. setting,
  10. ga_vt_symbol,
  11. ga_interval,
  12. ga_start,
  13. ga_rate,
  14. ga_slippage,
  15. ga_size,
  16. ga_pricetick,
  17. ga_capital,
  18. ga_end,
  19. ga_mode
  20. )
  21. return (result[1],)
  22.  
  23. def ga_optimize(parameter_values: list):
  24. """"""
  25. return _ga_optimize(tuple(parameter_values))
  • 运行遗传算法:调用deap库的算法引擎来运行遗传算法,其具体流程如下。1)先定义优化方向,如夏普比率最大化;2)然后随机从全局参数组合获取个体,并形成族群;3)对族群内所有个体进行评估(即运行回测),并且剔除表现不好个体;4)剩下的个体会进行交叉或者变异,通过评估和筛选后形成新的族群;(到此为止是完整的一次种群迭代过程);5)多次迭代后,种群内差异性减少,整体适应性提高,最终输出建议结果。该结果为帕累托解集,可以是1个或者多个参数组合。

注意:由于用到了@lru_cache, 迭代中后期的速度回提高非常多,因为很多重复的输入都避免了再次的回测,直接在内存中查询并且返回计算结果。

  1. from deap import creator, base, tools, algorithms
  2. creator.create("FitnessMax", base.Fitness, weights=(1.0,))
  3. creator.create("Individual", list, fitness=creator.FitnessMax)
  4. ......
  5. # Set up genetic algorithem
  6. toolbox = base.Toolbox()
  7. toolbox.register("individual", tools.initIterate, creator.Individual, generate_parameter)
  8. toolbox.register("population", tools.initRepeat, list, toolbox.individual)
  9. toolbox.register("mate", tools.cxTwoPoint)
  10. toolbox.register("mutate", mutate_individual, indpb=1)
  11. toolbox.register("evaluate", ga_optimize)
  12. toolbox.register("select", tools.selNSGA2)
  13.  
  14. total_size = len(settings)
  15. pop_size = population_size # number of individuals in each generation
  16. lambda_ = pop_size # number of children to produce at each generation
  17. mu = int(pop_size * 0.8) # number of individuals to select for the next generation
  18.  
  19. cxpb = 0.95 # probability that an offspring is produced by crossover
  20. mutpb = 1 - cxpb # probability that an offspring is produced by mutation
  21. ngen = ngen_size # number of generation
  22.  
  23. pop = toolbox.population(pop_size)
  24. hof = tools.ParetoFront() # end result of pareto front
  25.  
  26. stats = tools.Statistics(lambda ind: ind.fitness.values)
  27. np.set_printoptions(suppress=True)
  28. stats.register("mean", np.mean, axis=0)
  29. stats.register("std", np.std, axis=0)
  30. stats.register("min", np.min, axis=0)
  31. stats.register("max", np.max, axis=0)
  32.  
  33. algorithms.eaMuPlusLambda(
  34. pop,
  35. toolbox,
  36. mu,
  37. lambda_,
  38. cxpb,
  39. mutpb,
  40. ngen,
  41. stats,
  42. halloffame=hof
  43. )
  44.  
  45. # Return result list
  46. results = []
  47.  
  48. for parameter_values in hof:
  49. setting = dict(parameter_values)
  50. target_value = ga_optimize(parameter_values)[0]
  51. results.append((setting, target_value, {}))
  52.  
  53. return results