Installation using kubeadm

This guide describes deploying Cilium on a Kubernetes cluster created with kubeadm.

For installing kubeadm on your system, please refer to the official kubeadm documentation The official documentation also describes additional options of kubeadm which are not mentioned here.

If you are interested in using Cilium’s kube-proxy replacement, please follow the Kubernetes Without kube-proxy guide and skip this one.

Create the cluster

Initialize the control plane via executing on it:

  1. kubeadm init

Note

If you want to use Cilium’s kube-proxy replacement, kubeadm needs to skip the kube-proxy deployment phase, so it has to be executed with the --skip-phases=addon/kube-proxy option:

  1. kubeadm init --skip-phases=addon/kube-proxy

For more information please refer to the Kubernetes Without kube-proxy guide.

Afterwards, join worker nodes by specifying the control-plane node IP address and the token returned by kubeadm init:

  1. kubeadm join <..>

Deploy Cilium

Note

Make sure you have Helm 3 installed. Helm 2 is no longer supported.

Setup Helm repository:

  1. helm repo add cilium https://helm.cilium.io/

Deploy Cilium release via Helm:

  1. helm install cilium cilium/cilium --version 1.10.2 --namespace kube-system

Validate the Installation

Cilium CLI

Manually

Install the latest version of the Cilium CLI. The Cilium CLI can be used to install Cilium, inspect the state of a Cilium installation, and enable/disable various features (e.g. clustermesh, Hubble).

Linux

macOS

Other

  1. curl -L --remote-name-all https://github.com/cilium/cilium-cli/releases/latest/download/cilium-linux-amd64.tar.gz{,.sha256sum}
  2. sha256sum --check cilium-linux-amd64.tar.gz.sha256sum
  3. sudo tar xzvfC cilium-linux-amd64.tar.gz /usr/local/bin
  4. rm cilium-linux-amd64.tar.gz{,.sha256sum}
  1. curl -L --remote-name-all https://github.com/cilium/cilium-cli/releases/latest/download/cilium-darwin-amd64.tar.gz{,.sha256sum}
  2. shasum -a 256 -c cilium-darwin-amd64.tar.gz.sha256sum
  3. sudo tar xzvfC cilium-darwin-amd64.tar.gz /usr/local/bin
  4. rm cilium-darwin-amd64.tar.gz{,.sha256sum}

See the full page of releases.

To validate that Cilium has been properly installed, you can run

  1. $ cilium status --wait
  2. /¯¯\
  3. /¯¯\__/¯¯\ Cilium: OK
  4. \__/¯¯\__/ Operator: OK
  5. /¯¯\__/¯¯\ Hubble: disabled
  6. \__/¯¯\__/ ClusterMesh: disabled
  7. \__/
  8. DaemonSet cilium Desired: 2, Ready: 2/2, Available: 2/2
  9. Deployment cilium-operator Desired: 2, Ready: 2/2, Available: 2/2
  10. Containers: cilium-operator Running: 2
  11. cilium Running: 2
  12. Image versions cilium quay.io/cilium/cilium:v1.9.5: 2
  13. cilium-operator quay.io/cilium/operator-generic:v1.9.5: 2

Run the following command to validate that your cluster has proper network connectivity:

  1. $ cilium connectivity test
  2. ℹ️ Monitor aggregation detected, will skip some flow validation steps
  3. [k8s-cluster] Creating namespace for connectivity check...
  4. (...)
  5. ---------------------------------------------------------------------------------------------------------------------
  6. 📋 Test Report
  7. ---------------------------------------------------------------------------------------------------------------------
  8. 69/69 tests successful (0 warnings)

Congratulations! You have a fully functional Kubernetes cluster with Cilium. 🎉

You can monitor as Cilium and all required components are being installed:

  1. $ kubectl -n kube-system get pods --watch
  2. NAME READY STATUS RESTARTS AGE
  3. cilium-operator-cb4578bc5-q52qk 0/1 Pending 0 8s
  4. cilium-s8w5m 0/1 PodInitializing 0 7s
  5. coredns-86c58d9df4-4g7dd 0/1 ContainerCreating 0 8m57s
  6. coredns-86c58d9df4-4l6b2 0/1 ContainerCreating 0 8m57s

It may take a couple of minutes for all components to come up:

  1. cilium-operator-cb4578bc5-q52qk 1/1 Running 0 4m13s
  2. cilium-s8w5m 1/1 Running 0 4m12s
  3. coredns-86c58d9df4-4g7dd 1/1 Running 0 13m
  4. coredns-86c58d9df4-4l6b2 1/1 Running 0 13m

You can deploy the “connectivity-check” to test connectivity between pods. It is recommended to create a separate namespace for this.

  1. kubectl create ns cilium-test

Deploy the check with:

  1. kubectl apply -n cilium-test -f https://raw.githubusercontent.com/cilium/cilium/v1.10/examples/kubernetes/connectivity-check/connectivity-check.yaml

It will deploy a series of deployments which will use various connectivity paths to connect to each other. Connectivity paths include with and without service load-balancing and various network policy combinations. The pod name indicates the connectivity variant and the readiness and liveness gate indicates success or failure of the test:

  1. $ kubectl get pods -n cilium-test
  2. NAME READY STATUS RESTARTS AGE
  3. echo-a-76c5d9bd76-q8d99 1/1 Running 0 66s
  4. echo-b-795c4b4f76-9wrrx 1/1 Running 0 66s
  5. echo-b-host-6b7fc94b7c-xtsff 1/1 Running 0 66s
  6. host-to-b-multi-node-clusterip-85476cd779-bpg4b 1/1 Running 0 66s
  7. host-to-b-multi-node-headless-dc6c44cb5-8jdz8 1/1 Running 0 65s
  8. pod-to-a-79546bc469-rl2qq 1/1 Running 0 66s
  9. pod-to-a-allowed-cnp-58b7f7fb8f-lkq7p 1/1 Running 0 66s
  10. pod-to-a-denied-cnp-6967cb6f7f-7h9fn 1/1 Running 0 66s
  11. pod-to-b-intra-node-nodeport-9b487cf89-6ptrt 1/1 Running 0 65s
  12. pod-to-b-multi-node-clusterip-7db5dfdcf7-jkjpw 1/1 Running 0 66s
  13. pod-to-b-multi-node-headless-7d44b85d69-mtscc 1/1 Running 0 66s
  14. pod-to-b-multi-node-nodeport-7ffc76db7c-rrw82 1/1 Running 0 65s
  15. pod-to-external-1111-d56f47579-d79dz 1/1 Running 0 66s
  16. pod-to-external-fqdn-allow-google-cnp-78986f4bcf-btjn7 1/1 Running 0 66s

Note

If you deploy the connectivity check to a single node cluster, pods that check multi-node functionalities will remain in the Pending state. This is expected since these pods need at least 2 nodes to be scheduled successfully.

Once done with the test, remove the cilium-test namespace:

  1. kubectl delete ns cilium-test

Next Steps